字体:大 中 小
护眼
关灯
上一章
目录
下一页
第四百五十一章 杨老:无所谓,我会出手 (第1/4页)
.“ 虽然此时心中感慨万千,情感复杂无比。 但作为一名性格极其理性的科研汪,徐云的脑海中多少还存留着一部分清明。 因此他很清楚。 现在不是致谢或者表达情感的场合,全球的物理爱好者此时都关注着这里的情况。 即便是再复杂的情感,也只能等到台下去说。 现如今他的当务之急不是儿女情长,而是要尽可能的展现自己的能力,不能让周绍平的好意白费。 想到这里。 徐云不由深吸一口气,朝周绍平投去了一道感激的眼神。 旋即整个人的表情再次恢复了原先的平静。 他仿佛什么事都没有发生过一样,看起来就像是个请教问题的学生,对周绍平问道: “周院士,您觉得我的方案可行吗?” 周绍平思索片刻,点了点头: “可行。” 周绍平的这句话并不是客套,徐云的这个思路是真的令他有些意外兼惊喜。 实际上。 在刚点名徐云做助理的时候,周绍平确实有些许给徐云架舞台的想法,但这个念头一开始并不强烈。 毕竟架舞台的前提是徐云有真才实学,或者说在某个问题上表现出了真才实学的素养。 否则不就和没演技却要强吹演技,甚至搞虚假上座率刷票一样了吗? 若真是如此。 徐云和周绍平乃至整个华夏科学界都会沦为笑柄。 周绍平愿意做春泥不假,但不代表他会做某些蠢事。 因此在一开始的时候,他只是想先行观望一下,看看有没有什么机会给徐云搭个舞台。 后来包括赝标量的那部分卡壳,也都是他遇到的真实情况,而不是装出来的把戏。 结果没想到. 徐云的思维竟然如此敏捷,前后没几分钟就给出了一个非常精妙的计算方向。 加之有此前在锦屏深地实验室那次的配合经历打底,周绍平才临时做出了这么个决定。 也就是有徐云表现出了货真价实的能力这个‘因’,才有的周绍平所选择的‘果’。 因此对于徐云的思路,周绍平确实双手赞同。 在周绍平做出决定后。 徐云便不再迟疑,开始计算起了绕y轴旋转算符的矩阵元。 这其实不是一件容易活儿。 旋转矩阵和费米面一样,也是一个涵盖多领域的玩意儿。 比如shader也就是编程领域中就也有旋转矩阵,不过shader的旋转矩阵很容易。 只要通过正余弦关系做正余弦展开,然后做成矩阵相乘的格式,再用三个向量点乘充当正交基底就行了。 但到了粒子物理领域嘛 这事儿就比较复杂了。 因为它涉及到了实标量场的正则量子化范畴。 众所周知。 对于一个经典的由n个质点所构成的力学系统,它的广义坐标可定义为qi(i=1,2,.,N)。 其中N=3n为广义坐标空间的维数。 这时候呢。 系统的拉氏函数定义为: L=L(qi,q˙i),这道公式标注为1。 而对于场Ψ,则它的拉氏密度函数L可定义为: L=L(Ψ,μΨ)标注为2。 且拉氏密度函L是一个标量,其中场Ψ可以是一个标量、旋量、矢量或张量。 因此在弯曲时空中,一般物质场(引力场除外)的拉氏密度应该可以写成: L=L(Ψ,μΨ)标注为3。 对于微观系统,一般还不需要考虑引力,所以估且只关心2式。 由2式得场的拉氏函数为: L=∫L(Ψ,μΨ)d3x =∫L(Ψ,Ψ,1ctΨ)d3x =∫L(Ψ,1cΨ˙)d3x把它标注为4。 没错。 看到这里。 想必很多同学已经看明白了。 这个公式的意思很清晰: 可以理解成把空间分割成一个个的容积为dv的小方盒,其中编号为i小方盒中场的平均值为Ψi,并令qi=Ψidv, 则(4)式可以写成形如(1)式的形式: L=L(qi,q˙i)。 如此一来。 场量Ψ的物理意义才相当于(1)式中的广义坐标,也就是构筑出了一个系统,才能正式进行后续演算。 依旧非常简单,也非常好理解。 唰唰唰—— 这次徐云的推导过程没有依靠计算机,而是用手写进行着运算。 毕竟很多时候比起键盘,手写更容易进入状态。 更何况狄利克雷虽然在数学史上的排名只有20名出头,但他的计算能力却可以进入前十: 在当初的冥王星之夜中,狄利克雷负责的就是银经偏差值计算。(为啥昨天还有人说徐云没见过狄利克雷呢脑袋伸过来我给你个buff)
上一章
目录
下一页