字体:大 中 小
护眼
关灯
上一章
目录
下一页
第三十二章 无穷量级的萌芽(下) (第1/2页)
屋子里。 看着一脸懊恼的小牛,徐云的心中却不由充满了感慨: 虽然这位的人品实在拉胯,但他的脑子实在是太顶了! 看看他提到的内容吧: 微积分就不说了,还提到了法向量的概念、势能的概念、净力矩的概念以及小形变的假设的假设。 以上这几个概念有一个算一个,正式被以理论公开,最早都要在1807年之后。 这种150年到200年的思维跨度...敢问谁能做到? 诚然。 胡克提出来的问题其实很简单,简单到徐云第一时间想到的解法就接近了二十种,最快捷的方法只要立个非笛卡尔坐标系上个共变导数就能解决。 但别忘了,徐云的知识是通过后世学习得到的,那时候的基础理论已经被归纳的相当完善了。 就像掌握了可控核聚变的时代,闭着眼睛都能搞出个200cc的发动机。 但小牛呢? 他属于在钻木取火的时代,目光却看到了内燃机的十六烷值计算式那么离谱! 想到这,徐云心中莫名有些想笑: 他曾经写过一本小说,结果别说牛顿了,连麦克斯韦都被一些评论diss成了‘查了一下,不过一个方程组而已’。 随后他深吸一口气,将心思转回了现场: “牛顿先生,您的这个思路我非常认可,但是需要用到的未知数学工具有些多,以目前数学界的研究进度似乎有点乏力......” 小牛点点头,大方的承认了这一点: “没错,但除此以外,就必须要用到你说的韩立展开了。” 说完小牛继续低下头,飞快的又列出了一行式子: V(r)=V(re) V’(re)(r-e) [V’’(re)/2!](r-re)^2 [V’’’(re)/3!](r-re)^3...... 接着小牛在这行公式下划了一行线,皱眉道: “如果使用韩立展开的话,弹球在稳定位置附近的性质又该是什么?这应该是一个级数,但划分起来却又是一个问题。” 徐云抬头看了他一眼,说道: “牛顿先生,如果把稳定位置当成极小值来计算呢? 我们假设有一个数学上的迫近姿态,也就是......无限趋近于0?” “无限趋近于0?” 不知为何,小牛的心中忽然冒出了一股有些古怪的情绪,就像是看到莉莎和别人挽着手从卧室里出来了一样。 不过很快他便将这股情绪抛之脑后,思索了一番道: “那不就是割圆法的道理吗?” 割圆法,也就是计算圆周率的早期思路,上过小学人的应该都知道这种方法。 它其实暗示了这样一种思想: 两个量虽然有差距,但只要能使这个差距无限缩小,就可以认为两个量最终将会相等。 割圆法在这个时代已经算是一种被抛弃的数学工具,以徐云随口就能说出韩立展开的数学造诣,理论上不应该犯这种思想倒退的错误。 面对小牛的疑问,徐云轻轻摇了摇头,说道: “牛顿先生,您所说的概念是一个非级数的变量,但如果更近一步,把它理解成一个级数变量呢? 甚至更近一步,把它视为超脱实数框架的...常亮呢?” “趋近于0,级数变量?常量?” 听到徐云这番话,小牛整个人顿时愣住了。 无穷小概念,这是一个让无数大学摸鱼党挂在过树上的问题。 一般来说。 一个人从大学生到博士,对于无穷小的认识要经历三个阶段。 第一阶段跟第二阶段的无穷小都是变量,认识到第三阶段的时候,所有的无穷小都变成了常量,并且每个无穷小都对应着一个常数。 这些常数都不在实数的框架里面,都是由非标准分析模型的公理产生出来的
上一章
目录
下一页