走进不科学_第一百三十五章 不止是韩公廉那么简单 首页

字体:      护眼 关灯

上一页 目录 下一页

   第一百三十五章 不止是韩公廉那么简单 (第2/4页)

“不知是哪位大家?”

    老苏沉默片刻,组织好语言,面带些许崇敬道:

    “此人姓贾名宪,师从九章推步大师楚衍......”

    老苏的这番话还没说完,徐云的眼皮便狠狠抽了一下。

    妈耶。

    居然是贾宪?

    这个古代数学史上丰碑级的人物,这个时候居然还没死?

    说道古代华夏的知名数学家,很多人的脑海中第一个想到的可能是祖冲之。

    也就是全世界第一个将圆周率精算到小数第七位的男人,比欧洲要早一千多年。

    但除了祖冲之外,华夏还有不少数学方面的牛人,并且可以划分出很多类别。

    比如以对现代数学影响力而言,秦九韶无疑当属首推。

    因为本土数学中只有他的大衍求一术和中国剩余定理,仍然被现代数学所保留。

    其余的各种华夏古代数学技术和数学工具,都是被西方数学家另起炉灶重新发明的。

    而以划时代的开创性而言。

    那么无疑首推刘徽和朱世杰,因为他们分别对应着华夏两个数学高峰上的两次巨大的飞跃:

    刘徽整理了整个秦汉时期的数学知识,奠定了华夏古代数学的整体框架,总结了线性代数的整体计算框架。

    大体上类似希腊数学中的欧几里得。

    而朱世杰则整理了唐宋以降的数学,规范了天元术的数学框架,将华夏的代数从无符号计算带入了有符号计算。

    而在三角领域中,贾宪无疑是个大牛中的大牛。

    还记得1665副本中提到的杨辉三角吗?

    杨辉三角其实就是由贾宪提出来的,所以有些人会叫它贾宪三角。

    不过由于著作失传的缘故,他的优秀思想被另一位大数学家杨辉记录了下来,因此后世才以杨辉三角为名定义了这个规律。

    另外。

    贾宪还创造了“增乘开平方法”和“增乘开立方法”的开方方法。

    也就是求高次方程数值解的一类高效方法——这时欧洲还正在使用“罗马数码”呢,表数都十分困难,更不用说作这么复杂的开方运算了。

    贾宪增乘开方法的计算程序,大致和欧洲数学家霍纳(公元1819年)的方法相同,但比他早770年。

    没错。

    求高次方程数值。

    而这也恰恰是镜面精度计算中的一道重要环节,并且还有很多衍生数算公式要解。

    也就是说。

    无论是从能力还是专业角度出发,贾宪都是一位要比韩公廉合适的多的人选。

    但与此同时,他也是徐云计划之外的人物。

    因为贾宪此人的生卒时间,后世同样无人知晓。

    不过根据《宋史·艺文志》记载。

    贾宪在1050年左右完成了《黄帝九章算经细草》,当时他担任的是左班殿直的职务。

    左班殿直是三班之一,正九品官职。

    根据后世收集到的宋代官职与年龄的对照表来看,左班殿直一般是由25-35岁的成年男子担任。

    同时王洙在《国朝会要》中写过一句话:

    “宪今为左班殿直,吉隶太史。宪运算亦妙,有书传于世。”

    王洙撰写《国朝会要》的时间是1045年,也就是说1045年的时候,贾宪最少都已经25岁了。

    眼下55年过去,贾宪若是活着,保底都有八十岁,甚至可能九十岁。

    老苏能活到这个年龄,主要在于他是前任宰相,生活的物质水平可以说万中、甚至百万中无一。

    但贾宪只是个普通小官,没多久还辞职了,生活物质水平要远低于老苏。

    因此在后世的数学界,大多数人都认为贾宪在宋徽宗即位的时候就已经去世了。

    连词条百科上,给他的定义都是‘十一世纪上半叶的杰出数学家’。

    可眼下看来......

    贾宪居然还活着?

    而且按照老苏话中所言。

    若是能说动贾宪,他甚至可能从应天府赶过来!

   
加入书签 我的书架

上一页 目录 下一页