走进不科学_第三十一章 无穷量级的萌芽(上) 首页

字体:      护眼 关灯

上一页 目录 下一章

   第三十一章 无穷量级的萌芽(上) (第2/2页)

太过抗拒,大方的拿起麻饼和酒水吞进了腹中。

    毕竟这不是啥入教仪式,只是一类感恩性质的教会礼节,平时的徐云肯定不会主动去碰,但真要是到了这种关头他也不会太过抗拒。

    一般情况下,圣餐的酒水大多数时候都是葡萄酒,预示着圣子的血。

    不过由于当前货运航行被隔断的原因,格兰瑟姆的葡萄酒存余已然不多,因此亚尔林这次采用了新酿的苹果酒来代替前者。

    苹果酒的颜色其实要比葡萄酒更像是‘血’,但新鲜苹果酒的口感却远远比不上葡萄酒——尤其是用的还是布拉姆利这种果酸极多的苹果。

    因此刚一入口,徐云的味蕾便感受到了一股强烈的酸意。

    不过随着酒水入腹,徐云拿着木制酒杯的手忽然僵住了,脑海中划过一道闪电:

    他想到用什么东西来赚第一笔钱了!

    对,就是它!

    在圣餐环节结束后,威廉一行人仔细收拾好包裹(主要是圣书和叶包),接着便离开了教堂。

    与来时不同,徐云等人回去的这一路上没有任何意外发生,也就与几位同行的村民搭了几句话。

    就这样走走歇歇三个多小时,八人终于回到了伍尔索普小村。

    随后小牛、徐云两位年轻男性与威廉一家在村子路口处告别,各自返回了家中。

    刚一回园林房,小牛便掏出了胡克留给他的那张纸,说道:

    “肥鱼,你先别说话,听听我的解决思路。”

    徐云欣然同意,毕竟以小牛的心气来说,徐云只是一个辅助的‘工具人’,解题思路一定要通过自身解决才行:

    “您说吧,牛顿先生。”

    在胡克离开的时候,他便看过了胡克的问题,用文字描述其实很简单:

    假设你有一个弹珠,让它在一个不规则的坑里面滚来滚去,你知道这个坑的它的深度与横坐标之间的关系V(r),那么求这个函数的性质,也就是未发生形变的连续介质占据的空间计算问题。

    “我的想法是这样的。”

    小牛飞快的在纸上画了一个示意图,说道:

    “如果框定在笛卡尔坐标系内,假设弹珠是一个质点,相互作用只有近距离的x。

    那么施加在介质内部每一小块上的力的分量,都可以视作施加在这块介质表面,那么就应该有力密度的某个量对应表面的某个量。”

    徐云继续点头,小牛口中的‘某个量’,其实就是体积分和表积分。

    能从积分入手,说明小牛此时的微积分框架已经离搭建完毕不太远了,这无疑是个好消息。

    “那么我们假定£X是小面元的位移,根据卡尔达诺在1545年发布的《大数》中提到的一个平行四边形乘积性质,应该可以推导出ζF,然后再利用量的对称性进一步进行计算......”

    说道这儿,小牛忽然停了下来,不再说话。

    很明显。

    他的思路到此截止了。

    .....

    注:

    好吧我是起名废.....新手钓鱼人的走进不科学

加入书签 我的书架

上一页 目录 下一章